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PICSC	Downscaling	Workshop 
 

Presenta7on	on	Sta7s7cal	Downscaling 

September	16th,	2015,	Honolulu,	Hawaii 
Oliver	Elison	Timm 

λ  Primary	objec7ve:	 
λ  Mapping	future	seasonal	mean	rainfall	changes	 
λ  (the	average	of	rain-producing	weather	events	in	a	season) 

λ  Wet	season:	November-April 
λ  Dry	season:	May-Oct 

λ  Secondary	objec7ves:	 
λ  EsEmaEng	future	changes	in	heavy	rain	events 
λ  Drought-related	rainfall	characterisEcs 
λ  Compounding	effects:	high	temperatures	and	dry	condiEons 

Department	of	Atmospheric	and	Environmental	Sciences,	University	at	Albany 

Background 

 
λ  Research	team: 

λ  T.W.	Giambelluca,	H.F.	Diaz,	M.	Takahashi,	L.	Kaiser,	A.	Frazier,	R.	Longman 
λ  First	sta7s7cal	downscaling	(Timm	and	Diaz,	2009): 

λ  limited	staEon	data,	single	predictor	informaEon	(south-north	wind) 
λ  CMIP3	models	(6	objecEvely	selected	models	from	the	full	ensemble) 

λ  Downscaling	heavy	rain	events	(Elison	Timm	et	al.	,	2011,	2013):	 
λ  ENSO/PNA	variability	connecEon	with	heavy	rain	event	frequency 
λ  future	mean	shi^s	in	the		ENSO/PNA	states	(same	6	CMIP3	models) 
λ  →	future	changes	in	heavy	rain	frequency 

λ  Refined		heavy	rain	event	analysis	and	downscaling:	 
λ  downscaled	directly	daily	weather	staEsEcs	from		the	CMIP3	models 

λ  Updated	seasonal	downscaling	and	spa7al	maps: 
λ  more	staEons,	CMIP5	ensemble	(32	models),	mulEple	predictors 

λ  Studied	effects	of	kona	lows	on	local	rainfall 
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Sta7s7cal	Downscaling	Model 
λ  Boundary-type conditions: 

λ  Local station network determines what spatial details can directly 
be resolved (spatial interpolation after downscaling) 

λ  Temporal sample space is limited to observations of 1978-2007: 
λ  → Observations represent positive phase of the  
λ  Pacific Decadal Oscillation more than the negative phase.  
λ  → bias the SD model parameters (?) 

λ  Spatial scale for projected rainfall scenarios:  
λ  First interpolation (gridding):  0.5 minute resolution  
λ  Additional maps interpolated to 3km and 250m resolution 

λ  Time period: 
λ  2041-2070, 2071-2099, main target period 
λ  Time steps: annual time steps  were used in the downscaling 

 
 

ObservaEon	of	seasonal	anomalies 

local	rainfall	anomalies 

Composite	analysis 

CirculaEon	anomalies	during	observed	large	rainfall	
anomalies 

 
 
 

	Average	circulaEon	
pa`ern	in	low	rainfall	

seasons	 

Average	circulaEon	
pa`ern	in	high	rainfall	

seasons	 

Calculate	pa`ern	similarity	index	for	a	given	
circulaEon	pa`ern	 

Large-scale	predictor	Eme	series 

large-scale	circulaEon	 

MulEple	Linear	
Regression 

Future	Scenarios 

large-scale	
circulaEon	 

EsEmated	local	
rainfall	anomalies 
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ObservaEon	of	seasonal	anomalies 

local	rainfall	anomalies 

Composite	analysis 

CirculaEon	anomalies	during	observed	large	rainfall	
anomalies 

 
 
 

	Average	circulaEon	
pa`ern	in	low	rainfall	

seasons	 

Average	circulaEon	
pa`ern	in	high	rainfall	

seasons	 

Calculate	pa`ern	similarity	index	for	a	given	
circulaEon	pa`ern	 

Large-scale	predictor	Eme	series 

large-scale	circulaEon	 

MulEple	Linear	
Regression 

Future	Scenarios 

large-scale	
circulaEon	 

EsEmated	local	
rainfall	anomalies 

Parameter	fiRng	&	
cross-valida7on 

All	observaEons	were	
used	to	find	composite	
pa`ern.	They	are	not	part	
of	the	cross-validaEon.	 

Cross-valida7on: 
Splicng	the	observaEons	
into	two	sub-sets: 
(random, high/low 
rainfall) 
One	exclusively	used	for		
parameter	fiRng,	 
the	other	is	reserved	for	
cross-valida7on metrics:	 
CorrelaEon,	sign-test,	
bias-test 

Their	large-scale	 
circulaEon	anomalies 
are	represented	in	the	 
composite	technique	 
and	the	MLR 
 
Future	change	projec7ons: 
anthropogenically	forced	shi^s		
in	their	mean	state 
Ensemble	mean	projecEons	remove	
most	of	the	internal	variability. 
	
 
 

How	are	ENSO/PDO	and	other	oceanic	
processes	incorporated?	 

PNA (+) NINO3.4 (+) PDO (+) 

HI Rainfall   
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AssumpEons	of	staEonary		 

λ  Sta7s7cal	rela7ons	found	in	the	calibra7on	itself	remain	
constant	in	7me 

λ  Results	from	cross-validaEon	and	associated	uncertainEes/
confidence	are	representaEve	in	future 

λ  Consequences	if	sta7onarity	breaks	downs	in	future: 
λ  UnderesEmaEon/overesEmaEon	of	rainfall	anomalies 
λ  Even	methodically	possible	change	in	sign	 
λ  (physically	this	may	not	be	possible,	though) 
λ  OveresEmated	confidence	in	downscaled	results. 

How	well	are	synopEc	and	smaller	scale	
systems	reflected	in	the	model	and	output?	 
λ  Trade	wind	regimes 

λ  well	represented	in	their	effects	for	windward	rainfall 
λ  moderately	represented	for	leeward	rainfall	impacts 

λ  Kona	weather 
λ  any	change	in	kona	weather	would	likely	be	underesEmated	
in	their	impacts	on	rainfall	(in	parEcular,	leeward	and	dry	
sites	during	winter	months)	 

λ  Inversion	layer 
λ  Intensity	and	frequency	implicitly	accounted	for 
λ  Not	resolved	in	the	SD	model:	height	shi^s 
λ  Uncertain,	due	to	non-linear	effects	on	rainfall 
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How	well	are	synopEc	and	smaller	scale	
systems	reflected	in	the	model	and	output?	 
λ  Convec7ve	pop-up 

λ  Summer	convecEon,	land-sea	breeze	rain	events	difficult	to	
represent	in	the	SD	downscaling	for	seasonal	mean	rainfall	 

λ  Li`le	informaEon	on	uncertainty	and	bias	effects	 
λ  Cyclones 

λ  Not	taken	into	account	in	SD	model, 
λ  uncertain	if	seasonal	mean	circulaEon	could	provide	
staEsEcal	informaEon	to	account	for	cyclone	changes	
indirectly 

λ  (but	note	the	current	El-Nino	case:	indirect	cyclone	impacts	
may	be	captured	through	the	large-scale	circulaEon) 

IdenEficaEon	of	parameter	sensiEviEes 

λ  How	is	parameter	sensi7vity	evaluated? 
λ  In	the	staEsEcal	downscaling	model	parameters	are	fi`ed	
to	observaEons. 

λ  Monte-Carlo	methods	were	used	to	test	the	fi`ed	model	
parameters 

λ  Note:	Our	SD	model	does	not	include	a	parameterizaEon	
of	unresolved	smaller	scale	systems	such	as	trade-wind	
inversion,	convecEve	rain	(in	dependence	on	mean-
states) 

λ  	 
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Primary	sources	of	error 

Cross-validaEon	 
correlaEon 

Low	correlaEon	score:	 
→	StaEsEcal	error	is	large 
→	Other	errors	of	secondary 
importance 

Good	cross-validaEon	result: 
Differences	among	emissions	scenarios	 
primary	source	of	uncertainty	 

Effects	of	ensemble	averages	or	lumping	in	
represenEng	potenEal	future	condiEons 

λ  Ensemble	average:	 
λ  Reduces	internal	variability	and	individual	GCM	model	
uncertainty 

λ  Natural	variability	is	suppressed 
λ  (ENSO,	PDO	and	other	modes	of	variability) 
λ  Any	30-year	period	in	future	may	experience	a	PDO	(+)	or	(-)	
phase	superposed	on	the	mean	change. 

λ  →	Uncertain	when	to	expect	criEcal	thresholds	to	be		
exceeded. 

λ  	 
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What	are	your	challenges	represenEng	
extremes? 

λ  StaEsEcal	method	is	adaptable 
λ  →	other	target	staEsEcs	than	the	average	rainfall	 
λ  (e.g.	number	of	heavy	rain	events) 
λ  However,	problem	with	extreme	downscaling	is: 

λ  extremes	are	rare	events	=>	small	sample	to	fit	model	
parameters 

λ  extreme	weather	events	require	daily	model	data	from	
GCMs,	i.e.	weather	variability 

λ  GCMs	weather	variability	less	confident 
λ  OpEons:	derive	relaEonships	between	local	short-duraEon	
extreme	weather	and	large-scale	monthly-mean	circulaEon?		 

Which	aspects	of	the	model	are	 
the	most	confident?	 

λ  	Timescales: 
λ  StaEsEcal	error	grows	with	Eme	(as	the	anomalies	grow	in	
amplitude) 

λ  Linear	assumpEon	best	jusEfied	for	small	changes	10%-20%	(30%) 
λ  →	30-50	year	outlook	(mid	21st	century)	highest	confidence 
λ  Wet	season	(winter	months	Nov-Apr) 

λ  	Spa7al	scale/loca7on: 
λ  The	staEsEcal	model	projects	rainfall	anomalies	through	a	linear	
combinaEon	of	a	few	spaEal	pa`ern: 

λ  Higher	confidence	in	the	'island-wide	anomaly	pa`ern	associated	
with	ENSO,PDO 

λ  Dipole	pa`ern:	more	confidence	on	the	windward	sides	 
λ  →	highest	confidence	in	windward	sides	of	Big	Island,	Maui,	Oahu 
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Which	aspects	of	the	model	are	 
the	most	confident?	 

λ  	Downscaled variables (products): 
  

λ  highest confidence in the sign  
λ  of the seasonal mean rainfall anomalies 
λ  confidence higher in percentage change  
λ  than absolute values* 

λ    

Present-day reference rainfall: 
Sharp gradients (e.g. cloud-
elevation, or topographic 
shadowing /channeling effects)  

Station 2 
1000mm 
+25% 

 
 

3km 
 

Station 1 
500mm 
+20%  
 

Which	aspects	of	the	model	are	 
the	most	uncertain?	 

λ  	Timescales	('forecast	horizon') 
λ  	StaEsEcal	error	grows	with	Eme	as	the	anomalies	grow	in	
amplitude 

λ  	Linear	assumpEon	best	jusEfied	for	small	changes	10%-30% 
λ  → 	end	of		21st	century	lowest	confidence	in	amplitudes 

λ  	Dry	season	 
λ  	Individual	years	or	short-term	averages	(i.e.	decadal	averages) 

λ  	Process	7me	scales 
λ  	Extreme	events	on	sub-seasonal	Eme	scale:	hourly	or	daily	high	
intensity	rainfall** 

λ  	SynopEc	events	such	as	convecEon,	tropical	cyclones 
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Other	issues,	concerns,	or	ideas	 

λ  Temperature	downscaling	progress: 
λ  First	order	'bias-correcEon'	scheme: 

λ  Take	from	dynamical	downscaling	the	temperature	change-
elevaEon	dependence 

λ  Take	a	GCM	model	air	temperature	anomaly	for	a	given	
year	at	sea	level	(ambient	warming	over	surrounding	ocean 

λ  	scale	with	elevaEon-dependent	factor. 
λ  Ques7ons:	 

λ  Would	this	type	of	informaEon	be	useful? 
λ  Would	it	make	a	'consistent'	combinaEon	with	SD	
downscaled	rainfall	scenarios? 

Compounding	effects:	Temperature-
enhanced	water	stress	on	plants	during	

dry-spell? 
 
Conceptual model: 
  

Decrease  
in seasonal rainfall 

 
Increase in 

 dry-spell length 
 

Increase in daily  
maximum temp. 

Enhanced water  
vapor deficit 
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Appendix:	Useful	addi7onal	informa7on	for	upcoming	ques7ons 
In	discussions	or	for	one-on-one	talks	during	breaks 
 

Appendix:	Pacific	Decadal	Oscilla7on	(PDO) 

Source:		h`p://research.jisao.washington.edu/pdo/ 
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ObservaEon	of	seasonal	anomalies 

local	rainfall	anomalies 

Composite	analysis 

CirculaEon	anomalies	during	observed	large	rainfall	
anomalies 

 
 
 

	Average	circulaEon	
pa`ern	in	low	rainfall	

seasons	 

Average	circulaEon	
pa`ern	in	high	rainfall	

seasons	 

Calculate	pa`ern	similarity	index	for	a	given	
circulaEon	pa`ern	 

Large-scale	predictor	Eme	series 

large-scale	circulaEon	 

MulEple	Linear	
Regression 

Calculate	pa`ern	similarity	index	for	a	given	
circulaEon	pa`ern	 

Large-scale	predictor	Eme	series 

MulEple	Linear	
Regression 

Core	of	the	staEsEcal	
downscaling	method 

(1)	 
Finding	the	connecEon	
between	local	rainfall	

variability	and	large-scale	 
circulaEon 

ObservaEon	of	seasonal	anomalies 

local	rainfall	anomalies 

Composite	analysis 

CirculaEon	anomalies	during	observed	large	rainfall	
anomalies 

 
 
 

	Average	circulaEon	
pa`ern	in	low	rainfall	

seasons	 

Average	circulaEon	
pa`ern	in	high	rainfall	

seasons	 

Calculate	pa`ern	similarity	index	for	a	given	
circulaEon	pa`ern	 

Large-scale	predictor	Eme	series 

large-scale	circulaEon	 

MulEple	Linear	
Regression 

Core	of	the	staEsEcal	
downscaling	method 

(2)	 
Building	a	transfer	
funcEon	model: 

Input	large-scale	climate	
anomalies 

Output:	local	rainfall	
anomalies 
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Their	large-scale	 
circulaEon	anomalies 
are	represented	in	the	 
composite	technique	 
and	the	MLR 
 
Future	change	projec7ons: 
anthropogenically	forced	shi^s		
in	their	mean	state 
Ensemble	mean	projecEons	remove	
most	of	the	internal	variability. 
	
 
 

How	are	ENSO/PDO	and	other	oceanic	
processes	incorporated?	 

PNA (+) NINO3.4 (+) PDO (+) 

HI Rainfall   

l  SLP	example	form	Deser	et	al.	2014,	J.	of	Climate 
 

Appendix:	Effects	of	ensemble	averaging 
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Appendix:	Taking	into	account	mul7model	ensemble	 
and	internal	modes	of	variability 

Example:	 
Taking	32	CMIP5	RCP8.5	 
scenarios(wet	season)	 
and	using	all	individual	 
years	2071-2099 
 
We	calculate	the	percentage 
of	the	mulE-model	and	 
mulE-year	sample	that	 
indicates	dryer	condiEons 
than	in	the	lowest	value	in 
the	present-day	reference	 
period. 

Red:	30-40%	of	the	modelled	years		 
are	drier	than	the	driest	year	of	1978-2007. 

Appendix:	What	are	your	challenges	represen7ng	extremes? 

Example:	Using	ENSO	and	PNA	as	predictors 
For	the	number	of	heavy	rain	events Example:	ValidaEng			 

synopEc-weather	pa`ern-based	downscaled	 
heavy	rain	events	with	observed	heavy	rain 
	events	during	winter	seasons 
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For	the	case	of	in-depth	discussion	
represenEng	extremes	in	mean	staEsEcs 

Some	consideraEons	of	the	mean	staEsEcs. 

PICSC	Downscaling	Workshop 
 
Presenta7on	on	Sta7s7cal	Downscaling 

Sept	16th,	2015,	Honolulu,	Hawaii 
Oliver	Elison	Timm 

-  Primary	objecEve:	 
-  EsEmaEng	future	seasonal	mean	rainfall	changes:		that	is	
the	average	of	rain-producing	(and	non-producing)	
weather	events	in	a	season. 

- Wet	season:	November-April 
-  Dry	season:	May-Oct 
-  Secondary	objecEves:	 
-  EsEmaEng	future	changes	in	heavy	rain	events,	drought-
related	rainfall	characterisEcs. 

Department	of	Atmospheric	and	Environmental	Sciences,	University	at	Albany 




